Explicație pas cu pas:
a) folosim formulele:
[tex]sin²(A)+cos²(A)=1[/tex]
[tex]sin(A+B)=sinAcosB+cosAsinB[/tex]
[tex]sin(A−B)=sinAcosB−cosAsinB[/tex]
deci:
[tex]sin²a - sin²b = sin²a - sin²a×sin²b - sin²b + sin²a×sin²b = sin²a(1 - sin²b) - sin²b(1 - sin²a) = sin²a×cos²b - sin²b×cos²a = (sina×cosb)² - (sinb×cosa)² = (sina×cosb + sinb×cosa)(sina×cosb - sinb×cosa) = sin(a+b) × sin(a-b)[/tex]
b) folosim formula:
[tex]sinA+sinB=2sin \frac{A + B}{2} cos\frac{A - B}{2}[/tex]
deci:
[tex]sinx + sin3x + sin5x = sin3x + (sin5x + sinx) = sin3x + 2sin \frac{5x+x}{2} cos \frac{5x-x}{2} = sin3x + 2sin3xcos2x = sin3x \times (1 + 2cos2x)[/tex]