Explicație pas cu pas:
2.a)
[tex]1.5 + 0.(6) = \frac{15}{10} + \frac{6}{9} = \frac{3}{2} + \frac{2}{3} = \frac{9 + 4}{6} = \frac{13}{6} = 2 \frac{1}{6} [/tex]
b)
[tex](2 \times 2.2 + 1.44 \div 0.3) + 1.0(02) = (4.4 + 4.8) + \frac{1002 - 10}{990} = 9.2 + \frac{992}{990} = \frac{92}{10} + \frac{992}{990} = \frac{92 \times 99 + 992}{990} = \frac{10100}{990} = \frac{1010}{99} = 10 \frac{20}{99} [/tex]
c)
[tex]0.018 \div 0.9 \times 0.(3) = 0.02 \times \frac{3}{9} = \frac{2}{100} \times \frac{1}{3} = \frac{1}{50} \times \frac{1}{3} = \frac{1}{150} [/tex]
3.
[tex](0.(3) \times 1.(15)) + (2.27 - 2.01) = \frac{3}{9} \times \frac{115 - 1}{99} + \frac{227 - 201}{100} = \frac{1}{3} \times \frac{114}{99} + \frac{26}{100} = \frac{38}{99} + \frac{13}{50} = \frac{38 \times 50 + 13 \times 99}{99 \times 50} = \frac{3187}{4950} [/tex]
4.
[tex] \frac{1.2(6) + 3.(03)}{2} = \frac{ \frac{126 - 12}{90} + \frac{303 - 3}{99} }{2} = \frac{ \frac{114}{90} + \frac{300}{99} }{2} = \frac{ \frac{19}{15} + \frac{100}{33}}{2} = \frac{ \frac{19 \times 11 + 100 \times 5}{165} }{2} = \frac{709}{165 \times 2} = \frac{709}{330} = 2 \frac{49}{330} [/tex]