Explicație pas cu pas:
[tex]f(x) = \frac{ {x}^{2} + 2x + 2}{{x}^{2} + x + 1} \\ [/tex]
[tex]{x}^{2} + x + 1 \not = 0[/tex]
[tex]f'(x) = \Big(\frac{ {x}^{2} + 2x + 2}{{x}^{2} + x + 1}\Big)' = \\ [/tex]
[tex]= \frac{({x}^{2} + 2x + 2)' \cdot ({x}^{2} + x + 1) - ({x}^{2} + 2x + 2) \cdot ({x}^{2} + x + 1)'}{({x}^{2} + x + 1)^{2}} \\ [/tex]
[tex]= \frac{(2x + 2) \cdot ({x}^{2} + x + 1) - ({x}^{2} + 2x + 2) \cdot (2x + 1)}{({x}^{2} + x + 1)^{2}} \\ [/tex]
[tex]= - \frac{x(x + 2)}{({x}^{2} + x + 1)^{2}} \\ [/tex]
[tex]f'(x) = 0 \implies \frac{- x(x + 2)}{({x}^{2} + x + 1)^{2}} = 0 \\ \iff x(x + 2) = 0 \\[/tex]
[tex]x = 0 \implies f(x) = 2 \\ \Big(0;2\Big) \ \ punct \ de \ maxim \\ x = - 2 \implies f(x) = \frac{2}{3} \\ \Big( - 2; \frac{2}{3} \Big) \ \ punct \ de \ minim[/tex]
[tex]\implies \bf \frac{2}{3} \leqslant f(x) \leqslant 2 \\ [/tex]