Răspuns :
Explicație pas cu pas:
a)
[tex](x - { \sqrt{11} })^{2} = {x}^{2} - 2 \sqrt{11}x + 11 [/tex]
[tex](x - { \sqrt{11} })^{2} = 0 \implies x = \sqrt{11} [/tex]
b)
[tex]( - x - \sqrt{11} )^{2} = {x}^{2} + 2 \sqrt{11} x + 11[/tex]
[tex]( - x - \sqrt{11} )^{2} = 0[/tex]
[tex]- x - \sqrt{11} = 0 \implies x = - \sqrt{11} [/tex]
c)
[tex]( - x + \sqrt{11} )^{2} = {x}^{2} - 2 \sqrt{11}x + 11[/tex]
[tex]( - x + \sqrt{11} )^{2} = 0[/tex]
[tex]- x + \sqrt{11} = 0 \implies x = \sqrt{11} [/tex]
Vă mulțumim că ați ales să vizitați platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile oferite v-au fost de folos. Pentru întrebări sau asistență suplimentară, nu ezitați să ne contactați. Revenirea dumneavoastră ne onorează – adăugați-ne la favorite pentru a fi mereu la curent!